Parallel and Distributed Resource Allocation with Minimum Traffic Disruption- MATLAB PROJECTS CODE







Abstract

Wireless network virtualization has been advocated as one of the most promising technologies to provide multifarious services and applications for the future Internet by enabling multiple isolated virtual wireless networks to coexist and share the same physical wireless resources. Based on the multiple concurrent virtual wireless networks running on the shared physical substrate, service providers can independently manage and deploy different end-users services.

This paper proposes a new formulation for bandwidth allocation and routing problem for multiple virtual wireless networks that operate on top of a single substrate network to minimize the operation cost of the substrate network. We also propose a preventive traffic disruption model for virtual wireless networks to minimize the amount of traffic that service providers have to reduce when substrate links fail by incorporating `1-norm into the objective function.

Due to the large number of constraints in both normal state and link failure states, the formulated problem becomes a large-scale optimization problem and is very challenging to solve using the centralized computational method. Therefore, we propose the decomposition algorithms using the alternating direction method of multipliers (ADMM) that can be implemented in a parallel and distributed fashion. The simulation results demonstrate the computational efficiency of our proposed algorithms as well as the advantage of the formulated model in ensuring the minimal amount of traffic disruption when substrate links fail.